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Abstract. When conventional variational trial functions are used to solve systems such as 
Schrodinger’s equation with discontinuous potentials, it is found ttiat the convergence rate 
is very slow when compared with that for continuous potentials. In previous paper, the 
authors demonstrated how this convergence rate could be improved using local variational 
methods (i.e. finite elements). In this paper we demonstrate the construction of trial 
functions for global variational methods which results in a very substantial improvement in 
the obtained convergence rate. The technique, which is numerically stable, is based on 
orthogonal polynomials with suitable core functions incorporated. 

1. Introduction 

In a previous paper (Hendry and Hennell 1976, to be referred to as HH), the 
construction of a suitable variational trial function for use with square-well like 
potentials was discussed, it being demonstrated that a significant improvement in the 
convergence rate could be achieved by the inclusion of a suitable discontinuous core 
term to match the discontinuity in the second derivative of the solution. The variational 
approach outlined in HH was local in nature (i.e. the finite-element method was used), 
but an alternative global variational approach exists in which the trial functions used 
have influence over the whole region of interest. For the reasons outlined in HH, it is of 
interest to examine whether a similar improved convergence rate can be obtained 
within the global approach. Any such method should require only small modifications 
to existing computer codes for complicated problems. In § 2, the variational method 
and the choice of trial functions is outlined, while § 3 describes the results obtained for 
the potential of Bressel et a1 (1969) which was used previously in HH. Finally, 00 4 and 
5 contain a discussion of the results and some conclusions. 

2. Calculational details 

To illustrate the technique involved we restrict ourselves to the problem of finding the 
binding energy of a two-body s-wave system described by 

d2u(r) 
dr2 

-- + V(r)u(r) =Eu(r) r E ro, 001 (2.1) 
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where V(r)  is a given (discontinuous) potential. For the bound state, the boundary 
conditions associated with equation (2.1) are: 

u(r)-r r + O  

u(r)+O r+oO. 

Furthermore, for a discontinuous potential, d2u(r)/dr2 is discontinuous at the point rc at 
which V(r)  has the discontinuity. 

To solve the above problem numerically the variational Rayleigh-Ritz procedure 
was used. As in HH, the variational trial function was expanded as the sum of two types 
of term, consisting of core terms (to reproduce some particular feature of the solution- 
in this case the second derivative discontinuity) together with the customary systematic 
(or background) expansion set. The trial function has the form, 

M N 

i = l  i = l  
4!’!P(r) = C ac,ihc,i(r) + C ab,ihb,i(r) (2.3) 

where there are M core terms hc,i and N background terms hbSi. Thus there are a total of 
( M + N )  variational parameters (I = b, c) in (2.3) to be found by the Rayleigh-Ritz 
procedure. In this case, the trial functions incorporated the boundary conditions (2.2), 
so that hc,i and hb,i were taken to have the forms: 

hb, j  =Pb,j(r) e-pr 

where P,,, and P b , j  are polynomials in r which are O(r) at the origin and p is an 
adjustable non-linear parameter. 

Note that (2.4) ensures that hb,i and all its derivatives are everywhere continuous, 
but that the second (and higher) derivatives of h , ,  are discontinuous at r = r c .  For 
example, the second-order discontinuity of hc,i is 

Initially, for simplicity, the monomials were chosen for P,,, and Pb, i ,  but this proved to 
be a bad choice in practice due to the resulting numerical instability. When using a 
global variational method, it is desirable (for stability reasons) to use an orthogonal set 
of trial functions (see Mikhlin 1971). Rather than attempt to construct anorthogonal set 
of trial functions, a somewhat less involved procedure was used which proved to be 
completely satisfactory in overcoming the numerical instabilities. In this procedure the 
polynomials were taken to be 

Pc,,(r) = r~!5?)(2r/r~- I),  

Pb , i ( r )  = r~!2_’~(2pr), 

i = 1 , 2 , ,  . . 
i = 1 , 2 , .  . . 

where P;” is the Jacobi polynomial of type (I, m) and degree n and LL” is the 
associated Laguerre polynomial of type m and degree n. (Further details of these 
functions can be found in Abramowitz and Stegun (1964).) With this choice of 
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functions, the core terms and the background terms are separately orthogonal (to within 
a constant), i.e. 

but the core is not orthogonal to the background. 

problem 
The Rayleigh-Ritz procedure then reduces equation (2.1) to the matrix eigenvalue 

Su = M a  

where S and X are symmetric ( M + N )  X (M+N)  matrices and U is an (M+N)  vector 
with elements 

( a c . k  k a M  

a k =  I f fb , (k -M)  M <  k C N +  M. 

Note that the choice of trial functions ensures that the normalization matrix X has a 
simple block structure, the two diagonal blocks being themselves diagonal matrices, but 
the two off-diagonal blocks are full (i.e. non-zero) matrices. 

3. Results 

The discontinuous potential used to illustrate the technique was the ‘ S o  realistic 
nucleon-nucleon potential of Bressel et a1 (1969), modified by a factor of 1.4 to 
produce a bound state. The detailed form of this potential is given in HH, together with 
an estimate of the exact value of the binding energy it produces, namely, 

E =  -0.0377155. 

The magnitude of the second-order discontinuity is (from HH) 

Figure 1 shows the results obtained for the binding energy from the global variational 
method outlined in § 2. The required matrix elements were evaluated by numerical 
quadrature, a scaled Gauss-Legendre rule being used in [0, r,] with a scaled Gauss- 
Laguerre rule in [r,, CO]. The results were stable against these integration rules when 
sufficiently-high-order Gaussian rules were used. The results quoted here correspond 
to a thirty-point rule being used in each range, these being indistinguishable from the 
results obtained with smaller numbers of points. The results in figure 1 are presented 
for p = 1.5 (see equation (2.4)), this being chosen as the optimal value from runs with a 
small number of trial functions. The differences EN -E, where EN is the estimate of the 
binding energy using N background terms, have been plotted on a logarthmic scale for 
various numbers of core terms M. Also shown are straight lines which are the best fits 
(by eye) to the various sets of results. The gradients G of these lines are also given on 
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Figure 1. EN - E against N for various numbers of core terms M. The figures in brackets 
are (M, G) where G is the asymptotic convergence rate of 8 3. 

figure 1.  Note that this gradient gives the asymptotic convergence rate, i.e. for large N 

- E  = (constant)KG 

In (EN - E )  = constant - G In N. 

It is immediately apparent that for all values of M, the difference E N - E  steadily 
decreases with increasing N in accordance with the separation theorem for symmetric 
matrices (Delves 1973). This contrasts with the behaviour in HH where monotonic 
convergence was only obtained for a sufficiently large number of trial functions. 

The results for M = 0 (no core terms) confirm the expected slow convergence rate, 
but with the inclusion of a single core term (M = 1) there is an appreciable improvement 
both in the asymptotic convergence rate and in the absolute errror for the same number 
of background trial functions. The systematic inclusion of more core terms results in a 
steady improvement until M = 4 is reached where the convegence rate is approximately 
0(K8). For M > 4 ,  satisfactory results are still obtained. However, these have not 
been included here since it becomes difficult to detect any significant improvement in 
the convergence rate obtained over the convergence rate for M =  4. 

Figure 2 shows the results for the discontinuity At,#’ defined as in (3.1) with U 
replaced by the trial function (Lp. Again it is apparent that for each value of M, 
convergence to the exact value is taking place as N increases, the larger-M values 
producing better approximations than do the smaller-M values. These results confirm 
the expectation that the core terms can indeed be used to systematically build up better 
approximations to the discontinuity. 
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Figure 2.  AI&^' against N for various numbers of core terms M. The figure in brackets is 
(M); - - - - - exact value. 

4. Discussion 

The global variational method described here uses a trial function which has second 
(and higher) derivative discontinuities only at the point r,. Thus the core terms can 
permit not only an accurate approximation of the second derivative discontinuity but 
will also allow the third and higher derivative discontinuities at r ,  to be represented. 

Yates (1975) has shown that the asymptotic convergence rate to be expected from a 
variational method depends on the choice of functions in the expansion set and on the 
lowest derivative discontinuity present in the exact solution. For M <  4, the results 
obtained here indicate that as the number of core terms M increases, so does the 
asymptotic convergence rate. Since for each value of M, the background part of the trial 
function has the same form, it is reasonable to conclude that these improved con- 
vergence rates are a reflection of better approximations to the lowest derivative 
discontinuities. 

This behaviour should be contrasted with that found earlier in HH. There the cubic 
spline approach uses a trial function which has third derivative discontinities not only at 
rc but also at the knots defining the spline positions. Hence in this latter approach, the 
third derivatives of the exact solution can never be approximated everywhere, and the 
convergence rate achieved is essentially governed by the degree of spline used. 
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5. Conclusions 

In this paper we have demonstrated that the inclusion of a small number of core terms in 
a global trial function can significantly improve the convergence rate of the method 
when applied to a discontinuous potential. Moreover, the approach outlined here is 
easily generalized to a potential consisting of any number of square wells (or indeed 
more general discontinuous shape) by adding extra core terms based on the appropriate 
points of discontinuity. 

Finally we are not claiming that either the global or piecewise approximation is 
better. We merely emphasize that existing computer codes (for both types of approxi- 
mation) should be modified by including a suitable number of core terms to represent 
the appropriate discontinuities in the solution, in order to achieve adequate con- 
vergence rates. 
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